

桂林恒创光电科技有限公司

HC Optical Science and Tech Co., Ltd

秉着"恒创光电·恒久创新"的理念,以及技术的醇熟和技术团队的不断壮大, 我们陆续推出了光缆监测、分布式光纤测温和分布式光纤振动传感系统。

恒创光电将以高质量产品,为您提供光通信及光纤传感一站式解决方案。

专注于光通信、光纤传感解决方案

公司资质

恒创光电拥有多项知识产权,并通过 ISO9001 质量体系认证。我们 的产品符合 RoHS 标准,多套软件系统都经过权威第三方测试机构检

1 总览 4

1.1 概述 4

2 产品简介 5

- 2.1 光缆监测系统 5
- 2.2 系统规格 6
- 2.3 主机规格 7
- 2.4 系统架构 8

3 系统功能 9

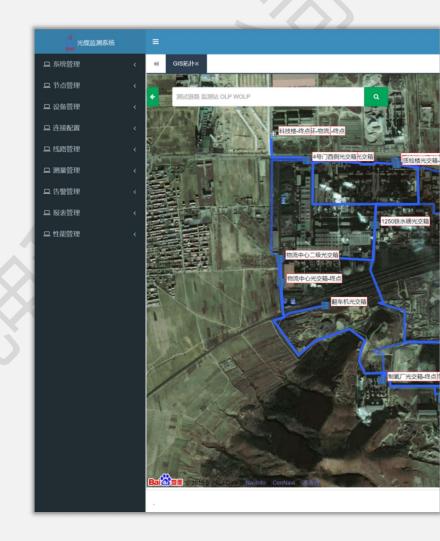
- 3.1 资源管理 9
- 3.2 GIS 地图 10
- 3.3 点名测试 11
- 3.4 周期测试 12
- 3.5 告警管理 13
- 3.6 报表管理 14

4 案例 15

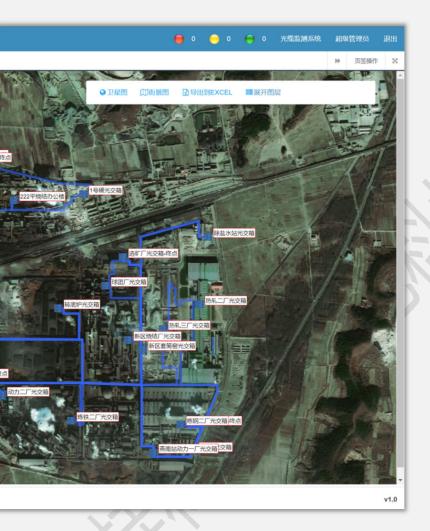
- 4.1 某部空闲纤芯监测 15
- 4.2 重庆电力试点项目 16
- 4.3 燕钢厂区环网监测 17
- 4.4 天津滨海新区综合监测 18

1 总览

1.1 概述


我国是光缆里程最长的国家,光缆分布具有跨 度大、环境复杂以及干线偏远等特点。光缆的 日常维护是一个耗时且繁重的过程。

恒创光电拥有上千平米的生产基地以及软硬 件研发团队。我们凭借多年对光缆在线监测的 丰富经验和理解,自主设计、研发并生产出基 于 OTDR 技术的光缆监测系统。


光缆监测系统旨在缩短光缆故障的排查时间, 提高运维的工作效率。同时系统提供的各项光 纤数据统计,为运维人员的工作安排,管理人 员的工作决策提供数据支撑。

依靠成熟的方案和优秀的质量,我们的光缆监 测产品合作单位包括部队、保密单位、电力系 统和各大运营商。

我们诚挚期待与您合作!

2 产品简介

2.1 光缆监测系统

光缆监测系统作为运维的工具,用于追踪光缆 线路故障,并监测线路劣化,旨在提供光缆运 维效率。

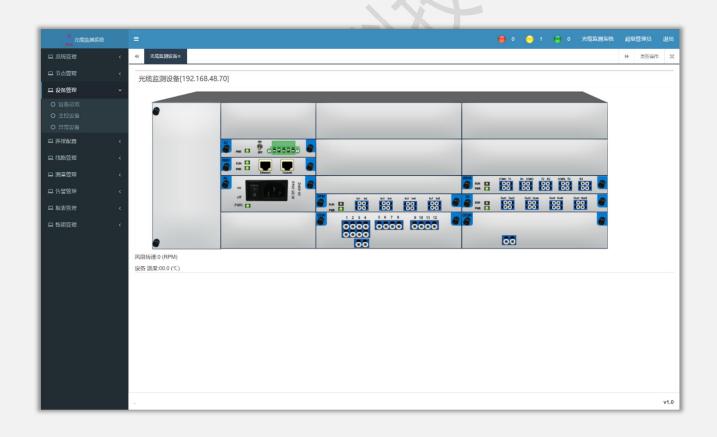
系统支持空闲光纤和业务光纤监测,并支持实 时和非实时监测多种方案。

光缆监测系统由系统网管软件和系统主机组 成。主机通过 TCP/IP 协议连接网管。

系统网管:

系统网管采用 BS 架构,用户可通过浏览器登 录网管。网管提供点名测试、周期测试和 GIS 拓扑等多项应用功能,并支持北向接口对接至 上位系统。

系统主机:


系统主机可根据系统网管定义的任务自动化 地完成线路测试,系统网管根据主机测试数据 判断线路故障并分析线路劣化程度,最后可形 成光纤质量报表,为光缆运维提供数据支撑。

产品特点:

- 主机采用插卡式设计,支持热插拔。
- 支持光线路保护业务板卡。
- 支持实时、在线等监测方案。
- 系统网管会形成光纤质量报表。
- 多用户分权、分级限管理。
- 系统主机可视化配置界面。
- 支持光开关矩阵。

2.2 系统规格

Windows 兼容平台 CPU 需求 Intel core i3 6100 或更高 内存需求 8GB 1GB¹ 硬盘需求 百度离线地图² GIS 地图 浏览器 推荐使用谷歌内核浏览器³ Java 环境 **JDK 1.8** 数据库 PostSQL 9.1

¹ 基础软件大小约为 1GB,实际所需硬盘空间还需包含离线地图,地图大小依具体项目而定。

² 系统采用百度离线地图,.jpg 格式,BD09 坐标系。

³ 我们推荐使用谷歌内核的浏览器,需要注意的是,光缆监测系统不支持 IE 浏览器。

2.3 主机规格

监测距离

电源

功率

测量时间

工作温度

工作湿度

尺寸

OTDR 工作波长

OTDR 动态范围

OTDR 事件盲区

OTDR 衰减盲区

≤ 120km

DC48V, AC220V

≤ 50W

典型值 10s/通道

-5℃ 至 55℃

0% 至 85% 相对湿度

1U: 483mm × 240mm × 44mm

2U: 483mm × 240mm × 89mm

4U: 483mm × 240mm × 176mm

1625nm

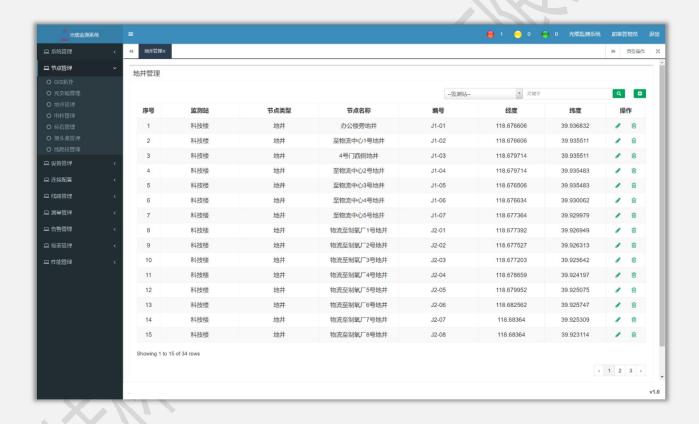
30dB 34dB 36dB 40dB 42dB

典型值 2m @10ns 脉宽

典型值 12m @10ns 脉宽

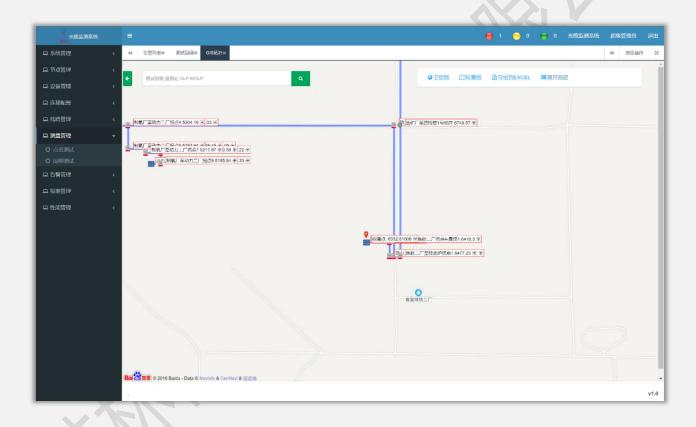
2.4 系统架构

光缆监测系统采用 BS 架构。系统网管提供丰富的应用功能,使用户轻松地管理线路 资源。系统网管还提供北向接口及 API 用以接入或对接到其它系统。

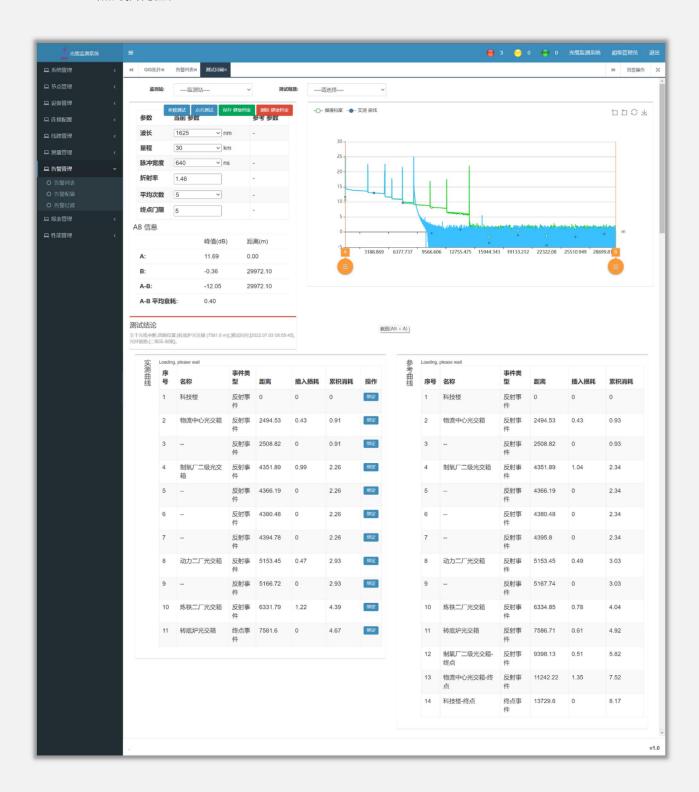

系统主机采用插卡式设计,并可配置功能多样的业务板卡,以应对不同的线路需求 和方案。系统主机通过 TCP/IP 协议连接系统网管。

3 系统功能

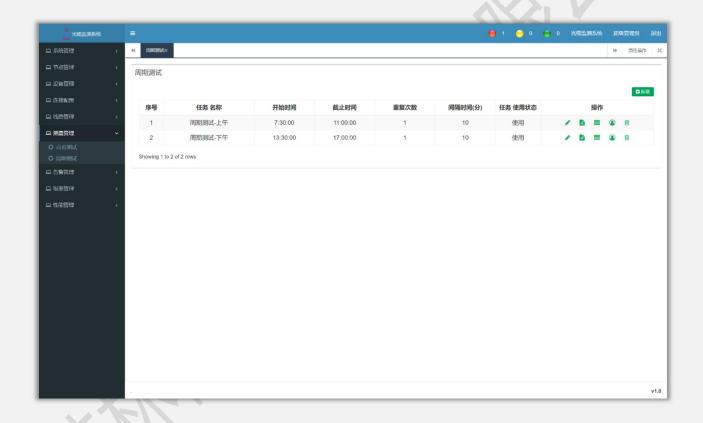
资源管理 3.1


用列表的方式展示设备、地理节点、监测站和线路等资源。用户可对基础信息进行 管理,并完成光缆网络基本信息的查询。

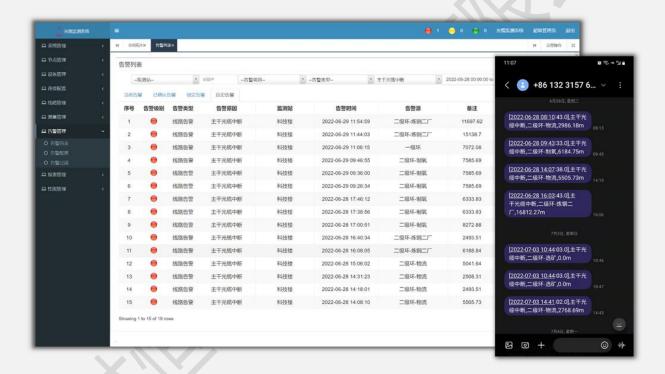
3.2 GIS 地图


系统网管采用的是百度离线地图,并可根据资源管理中的节点及线路信息,在地图上自动绘制线路,同时线路上也会呈现出录入的地理节点,更准确地显示光缆路由信息。

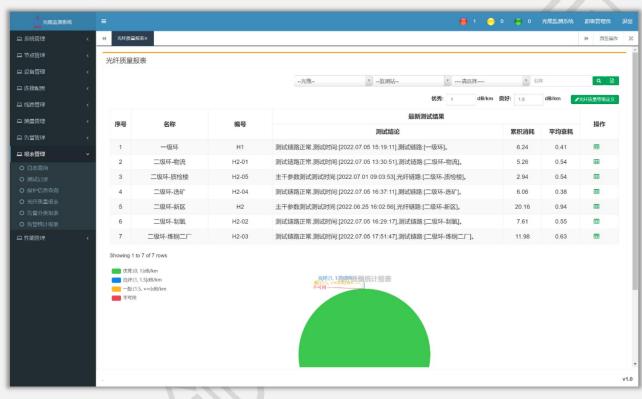
当线路标定并校准完毕后,如系统监测到线路告警,用户可从告警页面跳转至 GIS 地图页面,并在线路中标识出该告警。


3.3 点名测试

系统提供点名测试和周期测试功能。此外,在实时监测中,当光功率异常时,系统 会发起异常线路点名测试。测试可测量线路的整体损耗,并可测量出线路中每个节 点的损耗值。


3.4 周期测试

系统支持创建周期测试任务,在每天的固定时间段内,对选定的线路进行测试。合理地设置周期测试任务可替代人工巡检,有效降低线路的维护成本。


3.5 告警管理

系统可记录、查询当前及所有历史告警信息。并且,系统支持定义告警规则。同时, 告警支持以短信和邮件的形式下发到运维人员手中。

3.6 报表管理

对被监测光路全程劣化进行分析,具有光路对应的所有曲线的全程衰耗数值绘制出来,形成实际曲线,直观的展示出来,显示光路对应的所有曲线的详细数据列表,并最终形成报表。

序号	Mark to the	64 Sk 45 E1	最新测试结果			702.50
	链路名称	链路编号	测试结论	累计损耗(dB/Km)	平均衰耗(dB/Km)	评组
1	一级环	H1	主干光缆异常.故障明细.[科技楼-终点(15136.66 m):全程损耗越限.差值 3.87 dB].测试时间:[2022.06.19 18:18:40],光纤链路.[一级环]。	15.25	0.72	
2	二级环-物流	H2-01	测试链路正常,测试时间 [2022 06.19 13:23:16] 测试链路 [二级环-物流]。	4.29	0.44	
3	二级环-质检楼	H2-06	主干参数测试测试时间 [2022.06.18 17:33:05].光纤链路:[原检楼-1250-222烧接-1号磅房-2号门-质检楼]。	10	1.51	
4	二级环-选矿	H2-04	主干光缆异常,故障明细 [科技楼-终点(16099.55 m):全程损耗越限,差值 2.74 dB].测试时间[2022.06.19 19:07:06]光纤链路[二级环-选矿]。	13.63	0.83	
5	二级环-新区	H2	主干参数测试测试时间[2022.06.19 18:40:58],光纤链路(二级环-新区)。	9.89	0.46	
6	二级环-制筑	H2-02	主干参数测试测试时间[2022.06.19.14.24.52],光纤链路(二级环-制架)。	10.07	0.74	
7	二级环-炼钢二厂	H2-03	主干参数测试测试时间[2022.06.19.14:19:26]光纤链路[二级环-炼铜二厂]。	11.97	0.64	

4 案例

4.1 某部空闲纤芯监测

战区某部利用多台设备对光缆汇聚机房 10000多芯空闲纤芯进行轮询监测,以掌 握纤芯的质量状况确保网络变更的通畅。

在该项目中,巨量纤芯由专员定期巡查, 需要花费大量时间,并增加线路连接处劣 化的程度。

在部署光缆监测系统后,系统可在4天内 完成 10000 多芯的测量,提高运维效率。

本项目的方案为典型的 OTDR 加光开关的 空闲纤芯轮询监测方案,该方案成本优化, 配置简单并可实现大纤芯数量监测,适合 用于成本敏感的场景中。

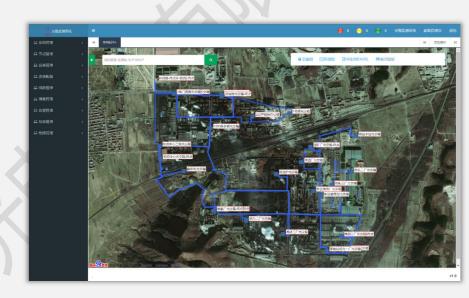
4.2 重庆电力试点项目

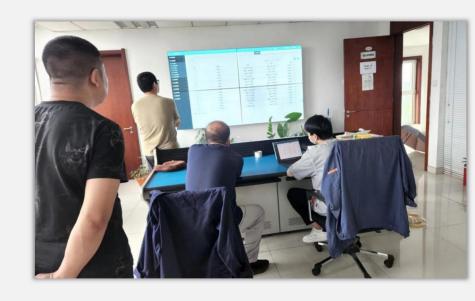
重庆电力利用光缆监测系统实时监测复合电缆中光纤的质量,在确保各电力设施通信无故障的同时可在 GIS 地图上呈现光缆(电缆)路由。

并且,当电缆由扰动时,系统也可实时监 测到纤芯光功率的变化。

本项目配套实时监测方案,利用光功率监 测板卡和光源板卡,对电力环网进行实时 监测。

恒创光电 | 16

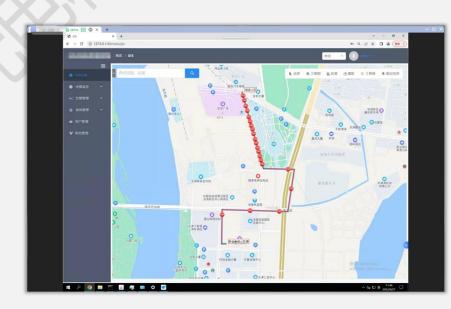



4.3 燕钢厂区环网监测

燕钢各分厂通过环网连接。由于长于环境 复杂,光缆故障多、劣化程度大,导致厂 区通信中断。

燕钢信息化科使用光缆监测系统实时监测 所有环网的故障情况。搭配短信模块,系 统可将告警信息发送至班组成员手中。

本项目中,由于纤芯资源紧张,所以再系 统中搭配波分复用板卡,将 OTDR 的传感 光和光源的监测光复用在一根纤芯上,节 省纤芯资源。



4.4 天津滨海新区综合监测

该项目对滨海新区地下管廊中各运营商光 缆进行防外破监测、温度监测和纤芯质量 监测,防止光缆因城市施工被破坏以及火 灾预应用场景。

专注于光通信、光纤传感解决方案

桂林恒创光电科技有限公司

HC Optical Science and Tech Co., Ltd

市场经理 186 0773 3834

网址 www.glhcoptical.com www.glhci.com

